
Production Technology Center Berlin

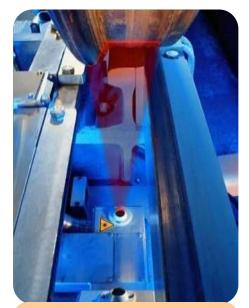
Your Partner for Research, Development, Realization

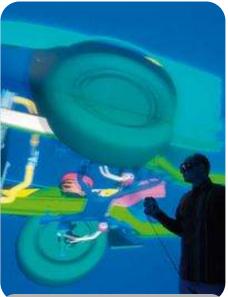
R+D Offers for Mining Industry in Chile

Fraunhofer IPK Pascalstr. 8-9 10587 Berlin

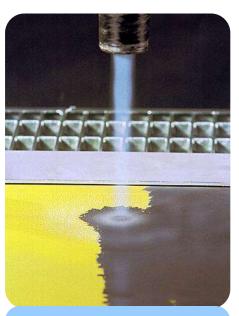
Dipl.-Ing. Eckhard Hohwieler eckhard.hohwieler@ipk.fraunhofer.de

Topics and Offers for Mining Industry




- 1. Maintenance Repair and Overhaul Technologies
- Condition Monitoring for Preventive Maintenance
- Repair Technologies
- Cleaning Technologies
- 2. Automation and Robotization
 - Automation Solutions
 - Cooperative Robots

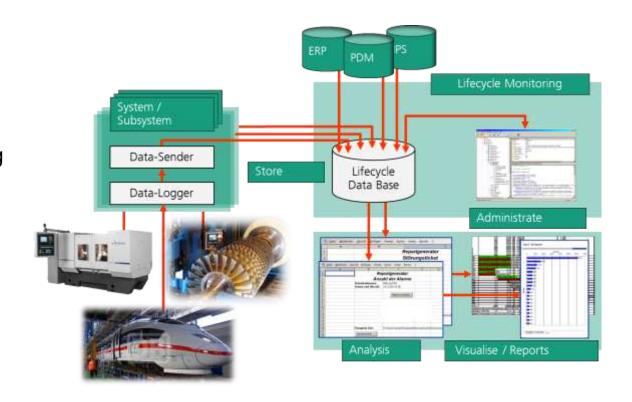
Maintenance Repair and Overhaul Technologies


Fields of Innovation in Innovation Cluster with regional industry "MRO IN ENERGY AND TRANSPORT"


Condition monitoring and diagnostics

MRO-Planning and digital assistance

Industrial cleaning

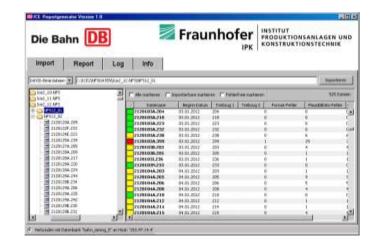


Repair technologies

Life Cycle Monitoring System

Previous projects with industry

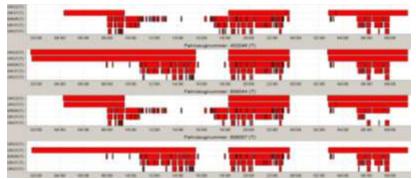
- Remote sensing and control
- Monitoring of machine tools
- Diagnosis for high speed trains
- Data logging in system
- Life cycle data base for monitoring
- Algorithms for condition analysis
- Visualization and reporting
- Interfaces for maintenance staff



Life Cycle Monitoring System

Motivation and Objective

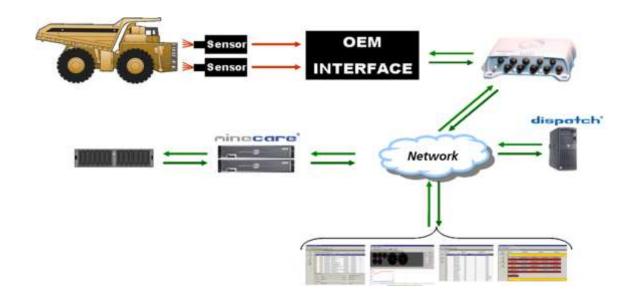
- Use of diagnostic data of existing on-board diagnosis system
- > Event logs, Alarms
- > Plausibility check
- Data model (entity relationship model)
- Data mining algorithms for interval data
- Modular software application with GUI for administration, analysis and reporting



Life Cycle Monitoring System

Big data management and Data Mining example

- Search for similar patterns by describing a template pattern quantitative search
- > Inspired by image processing algorithms
- Matching algorithm calculates distance between search and template image
- Candidates for matching results derived from local maxima



Improve Operation of Mining Trucks (Opportunities 9 & 10)

Concept and approach

- Continuous monitoring of trucks in operation
- Data logging and documentation
- Data analysis in maintenance and diagnostic center
- Adjust schedule for operation and maintenance of trucks
- Improve availability of trucks
- Optimize maintenance and repair services
- Reduce maintenance costs

Challenges

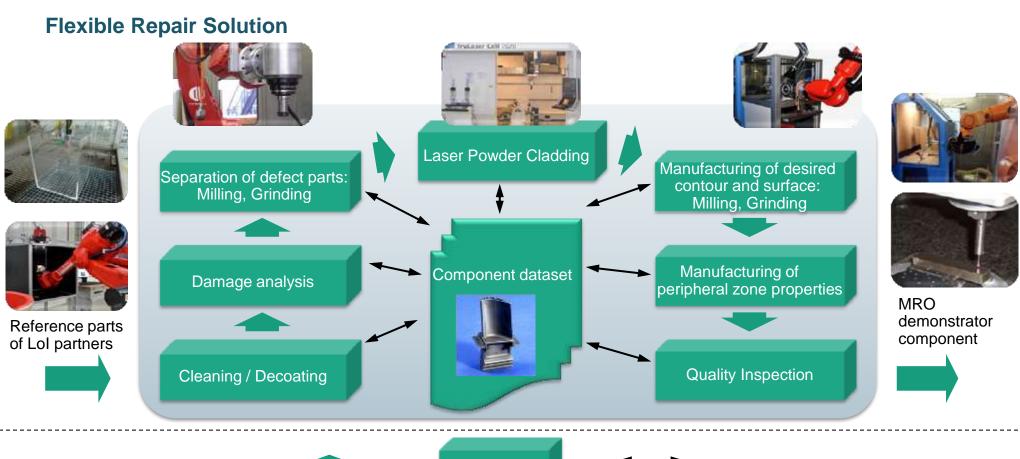
- Strategies for increasing the level of automation
- > Flexibility of repair processes
- Concepts for rapid manufacturing of spare parts
- Increasing the useful life of structural components
 by using more-wear-resistant materials and protective layers

Trend

- > Still Retrofit
- On-site repair


Highlights

Flexible repair solutions


Flexible Repair Solution

Motivation and Objective

- > Repair offers a considerable saving of costs as opposed to replacement
- > High proportion of manual processes
- > Low process reliability of individual stages of repair
- Low reproducibility of results
- Improvement of reproducibility and increase of automation
- Analysis of mechanisms of action and correlations between manufacturing technologies
- Concentration on repair technologies in one multiflexible prototypical robot cell

Process step

Information flow

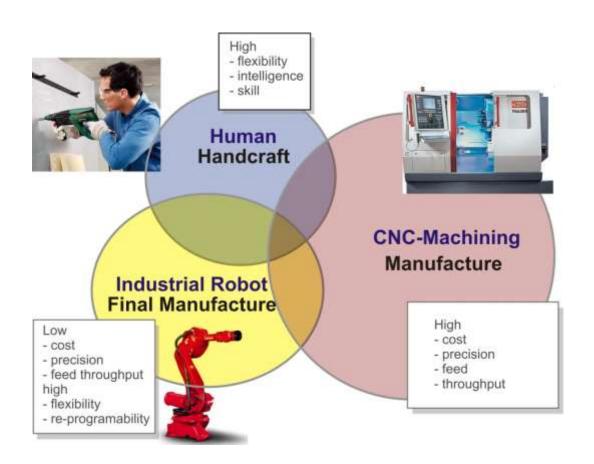
Material flow

Flexible Repair Solution with Robots

Summary of Results and Fields of Application

- > Prototypical demonstrator cell for the repair of turbine blades
 - Continuous, partly-automated process chain developed
 - Suitability of individual processes attested and partial links established
 - Further development of active resilience and force regulation as an effective, highly-flexible and economic approach for the mechanical processing with industrial robots
- Transferability to different (hard) materials and component contours is given
 - Nickel-based alloys ←→Titanium alloys
 - > Blades ←→ Blisks

Turbine components repair cell



Beltgrinder for robot applications

Machining with industrial robots - feasibility and limits

- Benefits: Scalable workspace and considerably price reduction (1/5-1/3)
- Use conventional robots and open robot control systems
- Perform contact tasks without additional passive/active impedance devices
- Advanced position based impedance and force control
- Adapt process parameters to specific robot features
- Development of robot friendly machining processes and process chains

Experimental set-ups at Fraunhofer IPK Robotic cells for milling, grinding and polishing

Applied Comau robots with C4GOPEN Controllers:

- NH3-220 (left)
- NJ-370 (upper-right)
- SMART-SIX (down-right)

Mobile repair solutions

Challenge

- > Reduction of down time during maintenance and repair
- Reproducible always constant repair quality required
- > High-precision parts with small tolerances

Solution

- > On-site repair avoids transportation and reduces downtime
- Automated methods offer high reproducibility
- > Laser technology with low energy input for little delay

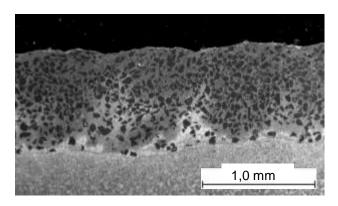
Approach

- Implementation of a CAD-CAM chain for laser welding repairs
- > Integration of metal cutting and laser cladding in mobile system concept

Rebuilding of grooves

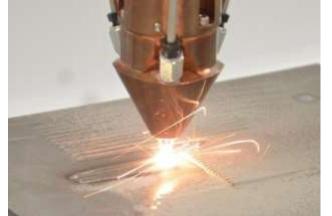
Process chain for crack repair:

- Cleaning
- Milling of damaged area
- Material deposition
- Refilling of the groove with multiple layer deposition


Refilling milled grooves

Multi layer build up

Wear protection layers with laser metal deposition



Opportunities

- No. 25: Improve designs and materials to increase the operating time of buckets shovels
- No. 50: Coatings, special materials, corrosion and abrasion resistant materials, etc

Possible project contents

- Cladding of bucket shovels with wear resistant material
- Optimization of cladding material for the specific wear conditions in order to increase corrosion and abrasion resistance
- Analysis of different carbide types (titanium or tungsten carbide) and matrix materials regarding their wear resistance
- > Economic analysis of cladding process and tool life enhancement
- Comparison of different cladding technologies

Hard-facing coating for wear protection

Cleaning Technologies

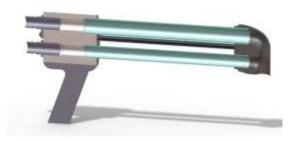
Development of ecological efficient technologies for cleaning

- Research and development for blasting technologies using stable abrasive materials and CO₂
- Development of individual cleaning tools
- Optimization of machines
- Exploration in new industrial fields of application for innovative cleaning technologies
- Initialization and management of the Fraunhofer-Alliance Cleaning Technologies

Cleaning Technologies

Project example - On-Site Cleaning tool

Motivation

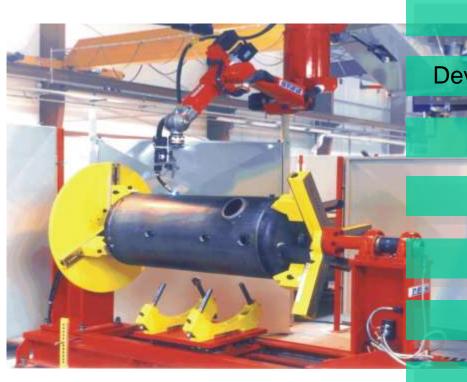

- Areas to clean are difficult to reach within a system
- > Disassembly and reassembly longer than cleaning operation
- Lack of on-side and on-platform tools and solutions for cleaning

Solution

- Development of miniaturized and application orientated cleaning tools
- Use of dry ice or water for cleaning tasks

Results

- Prototype of a deflection nozzle system for the cleaning of pipes and areas difficult to reach
- > Prototype of a on-side cleaning tool for turbomachines (details confidential)


Cut through CAD-Model

Deflection nozzle for cleaning of areas difficult to reach

Support on Development and Introduction of Automation Solutions

Analysis and Requirement Spec.

Development of Automation Concepts

Elaboration of Tenders

Assessment of Offers

Acceptance Procedures

Support of start-up

Support of initial operation

Cobots/Kobots – A New Class of Systems that Combine Features of Robots and Passive Hand-driven Manipulators

Industrial Robot

Precision
Path control
Sensor-based control

Kobot

Realistic approach for complex assembly and handling processes in industry and service branche

Passive Handling Manipulator

Safety Low costs Single operation

Human centered semi-automatic part handling and assembly with cooperative robots (Cobot)

COBOT - Approach

- Power assist system supporting the worker in part handling tasks
- Manual motion controlled by force input of the worker
- Intelligent additional functions
 - Path guidance / virtual walls
 - Teach-in function for positioning in automatic mode
 - Collision avoidance

Source: Fraunhofer IPK

Human centered semi-automatic part handling and assembly with cooperative robots (Cobot)

COBOT - Advantage

- High flexibility by direct human integration
- Intuitive (force based) interaction
- Configurable system behavior adapted to manual assembly processes
- Automatic functions for screen feeding and return to home / storage position
- Cost-efficient overall system solution
- Improvement of work conditions

=> Proposed usage in mining: Robotization of handling tasks in Electrowinning

Source: Fraunhofer IPK

Contact

Fraunhofer-Institute Production Systems and Design Technology

Pascalstr. 8-9 10587 Berlin

Director

Prof. Dr. h. c. Dr.-Ing. Eckart Uhlmann

Phone: +49 (0) 30/3 90 06-1 00

Contact Person

Dipl.-Ing. Eckhard Hohwieler Phone: +49 (0) 30/ 3 90 06-121

Fax: +49 (0) 30/3 91 10-37

E-Mail: eckhard.hohwieler@ipk.fraunhofer.de

